

© 2011, Sogeti Nederland B.V., based in Vianen, the Netherlands.

This work (or any part thereof) may not be reproduced and/or published (for whatever purpose) in print,
photocopy, microfilm, audio tape, electronically or in any other way whatsoever without prior written

permission from Sogeti Nederland B.V. (Sogeti).

All rights reserved TMap®, TMap NEXT® and TPI NEXT® are registered trademarks of Sogeti.

TESTING IN AGILE SOFTWARE DEVELOPMENT

ENVIRONMENTS WITH TMAP NEXT
®

authors: Leo van der Aalst en Cecile Davis

based on the original point of view paper

Testing in Agile Software Development Environments with TMap NEXT®

Table of contents

© Sogeti Netherlands B.V. Page II

TABLE OF CONTENTS

TABLE OF CONTENTS ... II

1 SUMMARY .. 1

2 INTRODUCTION .. 2

2.1 Target group and scope .. 2

2.2 Agile software development environments pose challenges for testing 2

2.3 Shift to an agile software development environment 3

2.4 Reviewers .. 4

3 THE AGILE MANIFESTO ... 5

3.1 Four values ... 5

3.2 Twelve principles ... 5

4 HIGH LEVEL VISION ON TESTING IN AGILE ENVIRONMENTS 7

5 COMMON CHARACTERISTICS OF AGILE METHODS 8

6 HOW TO PUT THE TEST VISION INTO PRACTICE 10

6.1 Use the agile manifesto as a starting point .. 10

6.2 Integrate the test activities in the agile software development environment 10

6.2.1 Test continuously ... 11

6.2.2 The testers’ role changes.. 12

6.2.3 Testing moves the project forward .. 13

6.2.4 Test tools are necessary ... 13

6.2.5 Testing is part of done ... 14

6.3 Find balance by making well-considered choices ... 14

6.3.1 Find the balance between working software and comprehensive

documentation .. 14

6.3.2 Find the balance between risks versus time and money 15

6.4 Reuse and adapt the values of TMap NEXT® .. 16

6.4.1 TMap NEXT’s adaptability ... 17

6.4.2 TMap NEXT’s approach towards techniques and tools 17

6.4.3 TMap NEXT’s business driven testing .. 18

6.4.4 TMap NEXT’s life cycle model .. 19

6.5 Concluding .. 22

7 GLOSSARY ... 23

8 ABOUT THE AUTHORS ... 25

Testing in Agile Software Development Environments with TMap NEXT®

Summary

© Sogeti Netherlands B.V. Page 1

1 SUMMARY

Structured testing can be perfectly integrated in agile development. This vision paper

is intended for everyone with an interest in Sogeti’s vision on testing in relation to the

agile manifesto1 and, in general, the application of TMap NEXT® 2 in an agile software

development environment (ASDE). This paper does not describe in detail how to use

TMap NEXT® together with a specific agile method, like Scrum.

In agile processes a number of aspects pose a significant challenge to the traditional

view of professional testing: lack of detailed requirements, reduced multipurpose

process documents (test strategy, plans and cases etc.), always delivering working

software, nightly integration and builds, user involvement, short time boxed iterations,
potential technical requirements for testers, change of culture (self managed teams),

distributed or off-shore teams and the fast pace of delivery.

Since testing is not only a vital element of agile projects but also an integral part of

agile software development, Sogeti decided to state its vision on testing in an ASDE:

1. Use the agile manifesto as a starting point

Our test vision is based on the four values of the agile manifesto together with the

twelve principles. This means that each and every proposed test activity must be

in line with the agile manifesto and its principles.

2. Integrate the test activities in the ASDE
a. The test activities must be integrated in the development process itself, agile

teams test continuously.

b. All team members must be prepared to perform test activities. Although a
professional tester should be part of the team, this does not mean that all test

activities must be carried out by the tester.

c. Testing should move the project forward.

This means a shift from quality gatekeeper solely to collaboration with all team

members to provide feedback on an ongoing basis about how well the

emerging product is meeting the business needs.

d. Test tools are increasingly important and should be used to support and

improve the performance of agile teams.

e. Test activities/acceptance criteria must be part of the definition of done.

3. Find balance by making well-considered choices

The right balanced choices will always be context sensitive, which means that

different factors like type of organization, type of project, business goals, available

resources and available technology are taken into account.

4. Reuse values of the traditional structured test approach of TMap NEXT®

The traditional test approach is still very valuable, but must be adapted to the

agile way of working.

1
 http://agilemanifesto.org/

2
 Koomen, T., Aalst, L. van der, Broekman, B., Vroon, M. (2006), TMap NEXT®, for result-driven testing,

’s-Hertogenbosch: Tutein Nolthenius Publishers, ISBN 90-72194-80-2

Testing in Agile Software Development Environments with TMap NEXT®

Introduction

© Sogeti Netherlands B.V. Page 2

2 INTRODUCTION

This paper contains the following chapters:

Chapter 1 Summary.

Chapter 2 The target group and the scope of this paper are described. A short

introduction to the testing challenges in an agile software development

environment and the shift from traditional software development to

incremental software development is described.

Chapter 3 In this chapter the high level vision on agile environments is given by

showing the four values and the twelve principles of the agile manifesto.

Chapter 4 Since the agile manifesto doesn’t say anything about testing, Sogeti

gives its test vision in this chapter.
Chapter 5 For a common understanding, the common characteristics of the agile

software development method in practice are described.

Chapter 6 In this chapter hints and tips are give on how to put Sogeti’s vision on

agile testing into practice using TMap NEXT® including the business

driven test management approach.

Chapter 7 Glossary.

2.1 Target group and scope

This vision paper is intended for everyone with an interest in Sogeti’s vision on testing in

relation to the agile manifesto3 and, in general, the application of TMap NEXT® 4 in an

agile software development environment (ASDE). Especially for managers, who work in

agile software development environments (ASDE) and want to know more about Sogeti’s

vision on testing in relation to the agile manifesto5 and TMap NEXT® in general. This

paper does not describe in detail how to use TMap NEXT® together with a specific agile

method, like Scrum.

2.2 Agile software development environments pose challenges for testing

In agile processes a number of aspects pose a significant challenge to the traditional

view on professional testing:

• Lack of detailed requirements.

• Reduced, multipurpose process documents (test strategy, plans and cases etc.).

• Frequently delivered working software.

• Intensive user involvement.

• Short time boxed iterations.

• Potential demands on the testers’ technical skills.

• Change of culture (self managed teams).

• Dealing with distributed or off-shore teams.

• Fast pace of delivery.

3
 http://agilemanifesto.org/

4
 Koomen, T., Aalst, L. van der, Broekman, B., Vroon, M. (2006), TMap NEXT®, for result-driven testing,

’s-Hertogenbosch: Tutein Nolthenius Publishers, ISBN 90-72194-80-2

5
 http://agilemanifesto.org/

Testing in Agile Software Development Environments with TMap NEXT®

Introduction

© Sogeti Netherlands B.V. Page 3

How can ‘complete’ testing be carried out without detailed requirements in short

iterations and with a scope that is uncertain? How much test documentation is

‘sufficient’?

Is it possible to harness the apparent advantages of agile, with its emphasis on speed,

customer responsiveness and flexible pragmatism, together with the structured

discipline of testing, with its focus on defined plans, sign off levels, and sequential

process steps?

With regard to the levels and phases of testing, what, in this context, is ‘acceptance

testing’? Does it mean attempting to substitute unit tests for acceptance tests?

What about non-functional tests, the evaluation of quality characteristics such as
performance, reliability, usability, scalability, etc.?

In this plethora of uncertainties, there is a further issue, that of the role of the

professional tester. This is particularly important in the context of multi-site teams

that are increasingly becoming the norm in large organizations. Do testers have the

right skills and are they able to add value in this seemingly unstructured environment?

This vision document addresses the issues specifically related to testing in an ASDE.

2.3 Shift to an agile software development environment

In sequential software development lifecycles, the emphasis traditionally has been on

defining, reviewing and subsequently validating the initial business requirements in

order to produce a full set of high-quality requirements. Further levels of testing, such

as system and user acceptance testing, are then planned to achieve coverage of these
requirements and their associated risks.

This approach, combined with a full lifecycle testing strategy, utilizing effective

document/code evaluation and other levels of development testing, such as unit and

unit integration testing, can achieve very high levels of software quality.

However, in reality, projects invariably fail due to a lack of end-user involvement, poor

requirements definition, unrealistic schedules, lack of change management, lack of

proper testing and inflexible processes.

This traditional approach means that there often is a disconnection between users and

testers. As a result, changes to requirements that often surface during the design or

coding phase may not be communicated to the test team. This results either in false

defects, or in a test strategy being incorrectly aligned with the real product risks.

To combat this, traditional projects exert a lot of effort in managing change because in

long-term projects, change is inevitable.

The agile software development approach, based on iterative development in which

requirements and solutions evolve in combination and change is embraced, would

therefore appear to offer a potential solution to the problems in a traditional approach.

Incremental software development processes have been specifically developed to

increase both speed and flexibility. The use of highly iterative, frequently repeated and

incremental process steps and the focus on customer involvement and interaction

theoretically supports early delivery of value to the customer.

Testing in Agile Software Development Environments with TMap NEXT®

Introduction

© Sogeti Netherlands B.V. Page 4

Agile software development is not a method in itself. It is derived from a large number

of iterative and incremental development methods. Methods such as:

• Rapid Application Development (RAD)

- 80’s, Barry Boehm, Scott Shultz and James Martin

• Scrum - The New New Product Development Game – Harvard Paper

- 1986, Ikujiro Nonaka and Hirotaka Takeuchi

• Dynamic Systems Development Method (DSDM)

- 1995, DSDM Consortium

• eXtreme Programming (XP)

- 1996, Kent Beck, Ken Auer, Ward Cunningham, Martin Fowler and Ron Jeffries

• Feature Driven Development (FDD)

- 1997, Jeff de Luca

In 2001 in Utah 17 representatives6 of the above mentioned and other similar

methods, met to discuss the need for lighter alternatives to the traditional

heavyweight methodologies. In about three days they drafted the agile manifesto, a

statement of the principles that underpin agile software development.

2.4 Reviewers

We would like to take this opportunity to thank all of the people who have contributed to

the content of this paper: Ben Visser, Clemens Reijnen, Eddy Huisman, Fran O’Hara,

Johan Vink, Julya van Berkel, Ken Brennock, Marc Valkier, Marco Jansen van Doorn,

Rik Marselis, Rob Baarda and Robin Mackaij.

We have worked on this paper with great enthusiasm. We feel that implementing

TMap NEXT® in an agile way will be a valuable addition in an ASDE.

Cecile Davis

Leo van der Aalst

6 The 17 authors of the manifesto were: Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn,

Ward Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern,

Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland and Dave Thomas.

Testing in Agile Software Development Environments with TMap NEXT®

The agile manifesto

© Sogeti Netherlands B.V. Page 5

3 THE AGILE MANIFESTO

Agile software development has many different ‘flavours’. However, the foundation of any

of these development methods known today can be found in the manifesto for agile

software development. The agile manifesto consists of four values and twelve principles.

3.1 Four values

At http://agilemanifesto.org the manifesto is stated as:

“We are uncovering better ways of developing software by doing it and helping others

do it. Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan.

While there is value in the items on the right, we value the items on the left more!”

Some ways wherein the first value expresses itself are the frequent face-to-face

communication between individuals, the self-regulation of the multidisciplinary teams

and the team’s responsibility.

The second value is followed by working in short iterations with working deliverables

at the end of each iteration, by prototyping and by efficiency in documentation.

The third value is supported by the involvement of customers in the team, frequent
feedback and demonstrations.

The last value can only be true if all disciplines are involved early, and the process is

implemented based on a strategy that considers changes being inevitable.

3.2 Twelve principles

The twelve principles behind the agile manifesto are:

1. Our highest priority is to satisfy the customer through early and continuous

delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile processes

harness change for the customer's competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of

months, with a preference for the shorter timescale.

4. Business people and developers must work together daily throughout the project.
5. Build projects around motivated individuals. Give them the environment and

support they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers and

users should be able to maintain a constant pace indefinitely.

Testing in Agile Software Development Environments with TMap NEXT®

The agile manifesto

© Sogeti Netherlands B.V. Page 6

9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity, the art of maximizing the amount of work not done, is essential.

11. The best architectures, requirements and designs emerge from self-organizing teams.

12. At regular intervals, the team reflects on how to become more effective, then

tunes and adjusts its behaviour accordingly.

Testing in Agile Software Development Environments with TMap NEXT®

High level vision on testing in agile environments

© Sogeti Netherlands B.V. Page 7

4 HIGH LEVEL VISION ON TESTING IN AGILE ENVIRONMENTS

The manifesto together with the twelve principles that lie behind it, is the starting

point for the way Sogeti looks at agile testing, for these cover the general ideas about

agile methodologies.

Since testing is not only a vital element of agile projects but also an integral part of

agile software development, Sogeti decided to state its vision on testing in ASDE:

1. Use the agile manifesto as a starting point.

Our test vision is based on the four values of the agile manifesto together with the

twelve principles. This means that each and every proposed test activity must be

in line with the agile manifesto and its principles.
2. Integrate the test activities in the ASDE.

a. The test activities must be integrated in the development process itself, agile

teams test continuously.

b. All team members must be prepared to perform test activities. Although a

professional tester should be part of the team, this does not mean that all test

activities must be carried out by the tester.

c. Testing should move the project forward.

This means a shift from quality gatekeeper solely to collaboration with all team

members to provide feedback on an ongoing basis about how well the

emerging product is meeting the business needs.

d. Test tools are increasingly important and should be used to support and

improve the performance of agile teams.

e. Test activities/acceptance criteria must be part of the definition of done.
3. Find balance by making well-considered choices.

The right balanced choices will always be context sensitive, which means that

different factors like type of organization, type of project, business goals, available

resources and available technology are taken into account.

4. Reuse values of the traditional structured test approach of TMap NEXT®.

The traditional test approach is still very valuable, but must be adapted to the

agile way of working.

It is important to realize that agile methodologies arose from software developer’s side.

Agile is not a prescriptive discipline, hence, specific processes like testing, configuration

management, build and release processes are not discussed. However neutral the agile

manifesto is towards the test discipline, the methods that embraced the agile philosophy

never focused on how to integrate the testing discipline thoroughly in ASDEs, nor did

they consider what the consequences for test professionals would be. Therefore many

organisations struggle with the implementation of testing in an ASDE.

Testing in Agile Software Development Environments with TMap NEXT®

Common characteristics of agile methods

© Sogeti Netherlands B.V. Page 8

5 COMMON CHARACTERISTICS OF AGILE METHODS

Agile methods break the work that has to be done into small chunks of functionality that

can be delivered in an iteration. Iterations (sprints) are short time frames (‘time boxes’)

that typically last from one to four weeks. There is no long-term detailed planning at the

beginning of the project, however, there is a global iteration planning. Detailed iteration

planning is done at the beginning of the iteration concerned. Each iteration includes

planning, requirements analysis, design, coding, unit testing, system testing and

acceptance testing. At the end the process is evaluated and a working product is

demonstrated to the stakeholders. Documentation is produced as required. An iteration

may not add enough functionality to warrant a market release, but the goal is to have

working software (with accepted defects) at the end of each iteration to show to the
customer. Team & stakeholders discuss each open defect during the product

demonstration.

The customer has the final verdict whether a defect is acceptable or not. Usually, multiple

iterations are required to release a product.

Responsibility

Teams in agile projects are usually cross-functional and self-regulating and are as a

team responsible for the results. Team members take responsibility for tasks that

deliver the correct functionality an iteration requires. They decide as a team how to

meet the iteration's requirements.

Efficient communication

Agile methods prefer co-located teams, where face-to-face communication, project
notice boards and efficient forms of communication are preferred over large written

documents. When a team works in different locations, they can use videoconferencing,

voice, e-mail, etc. to maintain daily contact.

Customer representative

No matter what development disciplines are required, each agile team will contain a

customer representative. This person is appointed by the stakeholders to act on their

behalf and makes a personal commitment of being available for the team to answer

questions and to give feedback. This person not only helps to explain requirements,

especially when developing the acceptance test cases, they also have the power to

prioritize requirements. At the end of each iteration, stakeholders and the customer

representative review the progress and re-evaluate priorities with the purpose to

optimize the return on investment and to ensure alignment with customer needs and

company goals.

Daily communication

Most agile implementations use a daily face-to-face communication among team

members. This specifically includes the customer representative and any interested

stakeholders as observers. In a brief session, team members report to each other

about what they did yesterday, what they intend to do today, and what their

roadblocks are.

Definitions of terms used in this paper

There are many different views and definitions on agile software development terms.

In this paper we use the terms as described below, but one should remember that

some organisations use these terms differently:
• A project contains many iterations and a list of user stories (high level

requirements).

Testing in Agile Software Development Environments with TMap NEXT®

Common characteristics of agile methods

© Sogeti Netherlands B.V. Page 9

User stories are very high level, many times just one line, but they can be

gathered at a very early stage in the project and are usually emerging throughout

the project.

• An iteration is a time boxed section of a project designed to deliver a subset of

working user stories.

• A release is a point in the project where working software is delivered.

Testing in Agile Software Development Environments with TMap NEXT®

How to put the test vision into practice

© Sogeti Netherlands B.V. Page 10

6 HOW TO PUT THE TEST VISION INTO PRACTICE

In this chapter Sogeti’s vision on testing in ASDEs will be discussed in more detail.

In addition, some tips and hints will be given on how to put the test vision into practice.

The four, high level, test vision values are:

1. Use the agile manifesto as a starting point.

2. Integrate the test activities in the ASDE.

3. Find balance by making well-considered choices.

4. Reuse values of the traditional structured test approach of TMap NEXT®.

The above mentioned values are described in the following sections.

6.1 Use the agile manifesto as a starting point

When implementing an agile method, a lot of organizations pick one or two appealing

values or principles from the agile manifesto and start to implement these favourite

values. However, wise and sensible it may sometimes be to start with small steps,

implementing only part of the values of the manifesto will not work in the end. It often

happens that organizations stop implementing halfway or just do not spend as much

attention to the other values as to the first. The manifesto is not a checklist you can

pick from. The way these values are implemented is open, which is why there are

different agile methods, but all values need to be implemented. And if an agile method

is implemented partly, it will also have consequences on how to deal with test

activities. Moving to agile is similar to any process change/improvement. That is,

everybody needs to be clear on why the change, and the steps to be taken to change

the process, is necessary.

First of all, to solve the issue of a test process that is not based on the agile manifesto

as a whole, it is necessary that all stakeholders involved are familiar with the

manifesto and the agile method that will be implemented. This seems very simple:

just give them a book to read. However, it is very important that people really

understand the values and their consequences. The manifesto and its principles stand

for a mindset; it is not a checklist.

Furthermore, it is most important that people have the same understanding.

If everybody has to learn the values on their own, for certain, different interpretations

will arise. That will lead to miscommunication and misunderstanding. The best and

most complete solution is therefore, to start by appointing an expert as coach, who

can give training and support. When everybody is used to the new way of working,

this coach will no longer be necessary.

6.2 Integrate the test activities in the agile software development
environment

In this section five aspects with respect to the integration of testing into an ASDE are

discussed.

Testing in Agile Software Development Environments with TMap NEXT®

How to put the test vision into practice

© Sogeti Netherlands B.V. Page 11

6.2.1 Test continuously

In traditional development environments testing is often inserted at a later stage,

although most test methods advise an early test involvement. In agile environments

testing is, by nature, incorporated from the beginning and throughout the whole

process. So, organizations need to think on how to deal with traditional test levels like

system test, user acceptance test, end-to-end testing, and production acceptance test

in an ASDE.

In this section two aspects with regard to continuous testing are discussed:

• Integrate testing with development activities.

• Apply test levels in an ASDE.

Integrate testing activities with development activities
Testing in agile projects cannot be seen as a separate activity but needs to be

integrated in the entire process. Testing is not only a vital element of agile projects,

it is an integral part of agile software development.

The underlying thought of the agile philosophy is to deliver business value as early as

possible and in the smallest workable piece of functionality. To prove that the

developed software works as desired and to prove business value, the user story and

product need to be tested. To make agile work well, testing cannot be seen as a

separate activity but needs to be integrated in the entire process.

Testers can add value in different areas by acting as a spider in the agile web. Besides

being involved in testing, they will be involved in formulating the definition of done, in

planning, in unit testing, in gathering all information necessary to form the test basis, in
risk management, in retrospection, in test automation, etc. Therefore, the role of the

tester is an important one. This early and high degree of involvement of testing in the

entire project has a lot of benefits. For instance, including testing activities/acceptance

criteria in the definition of done ensures that the software is considered ‘done’ only when

the testing is fully ‘done’.

A high degree of involvement at an early stage is essential for testing in agile

environments. All disciplines, testing included, must be involved as soon as possible in

the process. This is an essential part of agility, required, for instance, by the value in the

manifesto of responding to change. In agile environments, changing the requirements

can be done more easily than in a non-agile environment. If the change is discussed and

agreed upon within the team, which would also include the customer, then no one can

really oppose to the change. Testing, especially, is of importance in an early stage of

changing requirements, because of the value it can add to impact analysis and risk

analysis. The sooner testing can respond to changes and take actions, the better.

Also, responding to change raises a need for test automation, efficient and effective

documentation and more face-to-face communication. These differences require a

different approach and different skills from testers (see also section 6.2.2).

Test levels in an ASDE

In traditional software development environments, test levels like system test, user

acceptance test, end-to-end testing and production acceptance test are commonly

used. However, in ASDEs, all team members have to work together to get the work

done. In such an environment it is not relevant to talk about system test and

acceptance test levels/teams with managers and budgets of their own.

Testing in Agile Software Development Environments with TMap NEXT®

How to put the test vision into practice

© Sogeti Netherlands B.V. Page 12

If there is a need for some distinction, instead of test levels quality characteristics can

be used per user story. This way, certain test activities can be grouped together.

Quality characteristics can also be used to SMART-en up acceptance criteria in the

definition of done.

And what about end-to-end testing? Is it possible to incorporate this test level in the

agile process? This depends on the specific situation. Theoretically, end-to-end testing

would benefit enormously from agile software development. However, it will usually be

difficult to realize the end-to-end test within the agile process. Therefore, Sogeti

usually advises to implement end-to-end testing as a separate phase after the agile

project is completed.

6.2.2 The testers’ role changes

Agile project teams have to work together closely and the team should contain the
people required to make the project successful. In agile methods, involvement of all

disciplines, including testing, is part of the philosophy. Therefore, working with multi-

disciplinary teams is very important. So a tester must be part of the agile team.

Working in multi-disciplinary teams also means that all team members must be

prepared to fill in other roles if necessary. For instance, a developer must be willing to

fill in a testing role if the need arises. Especially, of course, when there is time

pressure on the test activities. On the other hand, testers must be willing to assist

other team members in their activities where they can according to the projects

needs. This can demand more technical skills and knowledge from a tester.

Working together means two-way traffic.

The nature of the testers’ role changes in iterative projects. Testers are no longer the
high-profile victims, they are no longer the lonely advocates of quality. They are

competent service providers, working in a team that wants to achieve high quality.

The testers’ role becomes richer and more influential. Agile methods require testers to

be involved in the development project continuously and right from the start.

Testers need to have technical knowledge of the software they are testing and need

to understand the impact on automation as well as the functional implications. Some

iterations may be development heavy, some automation heavy, some test heavy; the

agile tester needs to be adding value in all instances.

The personal characteristics that are especially important for a tester working in an

agile team are:

• Communicative

• A retrospective attitude

• Flexible

• Pro-active

• Creative but practical

• Thinking in solutions

• Customer-oriented

• Open-minded

• A team player

• Interfering with everything like a spider in a web

Professional testers should adapt to fit this different role and so provide additional

value by not only focusing on finding defects but also fulfilling a team role.

Testing in Agile Software Development Environments with TMap NEXT®

How to put the test vision into practice

© Sogeti Netherlands B.V. Page 13

6.2.3 Testing moves the project forward

On traditional projects, testing is usually treated as a quality gate, and the test team

often serves as the quality gatekeeper. The result of this approach exist of long,

drawn out bug scrub meetings in which different parties argue about the priority of the

bugs found in test and whether or not they are sufficiently important to delay a

release.

In agile teams, the product is built well from the beginning, using testing to provide

feedback on an ongoing basis about how well the emerging product is meeting the

business needs.

This sounds like a small shift, but it has profound implications. The adversarial

relationship that some organizations foster between testers and developers must be
replaced with a spirit of collaboration. This is a completely different mindset.

Testers must be pro-active and work with the business stakeholders to understand

their real needs and concerns. In traditional environments, this is usually called

‘requirements elicitation’. In the context of agile development, the purpose of this

discussion is not to gather a huge list of requirements but rather to understand what

the business stakeholder needs from one particular user story.

During these discussions, the tester must ask questions designed to uncover

assumptions, understand expectations around non-functional needs such as

performance, reliability, security, etc., and explore the results the business

stakeholder is requesting. This will improve the quality of the software product.

One, very effective, way of involving testers early is to introduce test driven

development. This way, testers, programmers and business representatives can all

learn from each other, while interpreting the requirements together.

6.2.4 Test tools are necessary

Over time, test tools have become increasingly important to the performance of agile

teams. This is not just because teams sometimes have to be technically oriented, but

because the right tools can help a team to become more efficient.

If agile is about speed, efficiency and flexibility, then the role of automation in agile is

to support this and remove mechanical, routinely and time consuming tasks. Due to

the required speed of agile, management of test data and environments needs to be

very efficient and effective with little if any room for unnecessary manual effort.

Although this seems logical, it is still very hard for people working in an ASDE to

decide upon the tools to be used and how these tools should be implemented and

used. Tasks that can normally be automated within agile teams include:

• Build and integration process.

Usually in agile teams, this process happens on a very regular basis (every night),

resulting in a new build every day, with almost zero manual effort being put into

this task. This requires good configuration management and build tools.

• Unit (integration) Test.

These are part of the nightly build and integration process, allowing the

development team to get instant feedback on the quality of their code. The

execution of these unit tests requires no manual intervention.

Testing in Agile Software Development Environments with TMap NEXT®

How to put the test vision into practice

© Sogeti Netherlands B.V. Page 14

• Static Analysis Tools.

Instead of doing manual code reviews, the analysis tools review the

code against coding standards to uncover defects. The manual reviews can be

kept for particular types of defects or more complex code.

• Test data and environment management.

Available tools can generate data to manage the test environment.

• Regression Testing.

To be able to follow the quick pace of agile software development, agile teams

cannot do without automated regression testing.

• Functional Testing.

Until now, functional automation testing has focused on regression testing.

However agile teams are pushing for functional testing to be automated earlier
and earlier in the development lifecycle, so that it is the design of test cases

rather than the execution that is important. The use of Model Based Testing (MBT)

tools in combination with the automation of test case execution is a (almost)

perfect solution for functional testing in agile environments. Test execution should

be automated as much as possible.

6.2.5 Testing is part of done

In traditional software development environments with strict boundaries between

development and test, it often happens that user stories are declared ‘done’ before it

is tested properly.

Of course, agile teams only count something as ‘done,’ when it has been implemented,

tested and bugs have been fixed.

Incorporating testing in the definition of done gives more control on iteration planning,
on testing risks, more early involvement for testers and therefore more grip on the

test process.

6.3 Find balance by making well-considered choices

The most important consideration when using an agile software development method,

is finding the right balance in the choices that have to be made. When you look at the

four values of the agile manifesto, you could think about a balanced choice for each

value between the left and right item.

In practice, however, we see agile project teams struggle mostly with finding balance

between:

• Working software and comprehensive documentation.

• Covering the risk and the available time and money.

Therefore these two balances will be discussed in the following sections.

6.3.1 Find the balance between working software and comprehensive documentation

Does agile mean the end of all documentation? To those looking at adopting agile

practices, especially if they come from more traditional project management

backgrounds, agile can seem quite loose, especially in the area of documentation.

The agile manifesto values working software over comprehensive documentation.

And in agile projects working software is perhaps the ultimate quantification of your

projects status. This may take some time to get used to.

Testing in Agile Software Development Environments with TMap NEXT®

How to put the test vision into practice

© Sogeti Netherlands B.V. Page 15

Agile methods are all in favor of documenting only what is necessary. They simply

value working software over comprehensive documentation. However, what level of

documentation is necessary may vary per project. Besides that, just deciding on what

to document and what not, is not enough. Whenever decisions are made on, for

instance, the extent of documenting requirements, it must be thought over how the

information about these requirements that is not in the documentation is

communicated between the different “requirements stakeholders”. There should be a

balance between documentation and communication so that important information

does not get lost.

In addition, there is a number of principles behind the manifesto that elaborate on this
value:

• Working software is the primary measure of progress.

• The teams’ highest priority is to satisfy the customer through early and continuous

delivery of valuable software.

• Deliver working software frequently, from a couple of weeks to a couple of

months, with a preference to the shorter timescale.

• The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation.

Sometimes end-user documentation is used as one of the criteria for ‘done’. It can

also be used to document decisions for team continuity. And documentation may even

be needed for regulatory compliance.

With regard to the quantity of documentation to be produced, the team could be

asked to answer two simple questions:

• Does the documentation add value?

• Is the team better off writing it?

6.3.2 Find the balance between risks versus time and money

An agile project, like any other project, never has unlimited time and money for

testing purposes. Such constraints in terms of time and money represent constraints

on the test result to be achieved and therefore reduced coverage of the product risks.

As such it is important to make well-considered choices in relation to the optimum

division of the available time and money across the user stories that require testing.

In fact we need to determine product risks and test strategy in an agile business

driven test management way.

Based on the insight resulting from the product risk analysis, high risk user stories can

be tested more thoroughly than those representing a lower risk. A product risk is the

chance that the product (user story) will fail in relation to the expected damage if it

does.

Product risk = Chance of failure * Damage

When performing the product risk analysis, all stakeholders should be member of the

agile team and participate in the analysis.

In an agile environment it is difficult to perform a product risk analysis for the release

as a whole. There is just not enough detail available of individual user stories. So, in

practice a product risk analysis can be performed at the start of each iteration.

Testing in Agile Software Development Environments with TMap NEXT®

How to put the test vision into practice

© Sogeti Netherlands B.V. Page 16

Since an iteration will deliver a few user stories only, it does not take much time to

perform the analysis (it could be done on a whiteboard). During an iteration, some

product risks can change from high to low or vice versa and new product risks can

emerge. The product risk analysis evolves with the product.

The next step is to determine the testing strategy. In this activity, the outcome of the

product risk analysis is used to determine which combinations of quality characteristic

and user story are to be tested with what test intensity.

All user story and quality characteristic combinations are carried out by the agile

project team members. And, as with the product risk analysis, the test strategy will be

evaluated regularly and will evolve with the product.

The test strategy is the foundation for every test action, activity, process or project.

It holds the justification of what will be tested and how this will be done. Proper risk

analysis drives this justification: “No Risk, No Test”. The test strategy describes the

test goals, how they will be approached and how (product) risks are covered. Risks

influence priorities in agile methodologies. Areas that carry the greatest risks need to

be prioritized highly. Furthermore, risks will trigger the noted flexibility of agile

environments in deciding what to do and what not to do in terms of time, costs and

quality. The test strategy thus facilitates the whole agile team.

6.4 Reuse and adapt the values of TMap NEXT®

Many people think that agile projects are chaotic, unorganized and uncontrolled. On

the contrary. Agile projects will not be successful when they lack discipline or

structure. Because of this prejudice, however, structure is often thrown out as is the
baby with the bathwater.

A structured testing approach offers the following advantages:

• It delivers insight into, and advice on, any risks in respect of the quality of the

tested system.

• It finds defects at an early stage.

• It prevents defects.

• The testing is on the critical path of the total development as briefly as

possible, so that the total lead time of the development is shortened.

• The test products (e.g. test cases) are reusable.

• The test process is comprehensible and manageable.

When implementing an agile method, organizations often find it difficult to decide on

what practices to keep and what practices to throw out. Usually, organizations find it

easier to start afresh without much consideration for the consequences of throwing out

old structures, and very often the baby is thrown out with the bathwater.

When organizations refrain from this decision process, they might save time at the

beginning, but in the end the result can be loss of insight into the quality of the tested

system, lacking reusability, lacking maintainability, more defects and delays in testing

due to an unmanageable test process and most of all loss of all the advantages of an

efficient running agile project.

To be able to decide upon which test structures and activities to keep and which to

discard, it is necessary to have a good knowledge about the agile method to be

implemented. An expert as coach, who can give training and support and who is

aware of all the issues coming up during a transition from one method to another is

Testing in Agile Software Development Environments with TMap NEXT®

How to put the test vision into practice

© Sogeti Netherlands B.V. Page 17

almost indispensable. Usually, many practices and procedures, whether or not

adjusted, can be reused.

In the following sections some examples will be given of how to adapt the four

essentials of TMap NEXT® to an ASDE.

6.4.1 TMap NEXT’s adaptability

In agile development reacting to change, learning and improving the way of working

within the team are fundamental elements. TMap NEXT® supports this, since one of

the TMap NEXT® essentials is “adaptability” with almost the same elements (in TMap

NEXT® called “properties”) as mentioned above.

TMap® is an approach that can be applied in all test situations and in combination with

any system development method, explicitly including agile development methods.
It offers the tester a range of elements for his test, such as test design techniques, test

infrastructure, test strategy, phasing, test organisation, test tools, etc. Depending on the

situation, the tester selects the TMap® elements that are appropriate. Sometimes, only a

limited number of elements need to be used; at other times, a wide range of elements

will be appropriate. This makes TMap® an adaptive method. But remember, where

adaptation is required, balanced choices must be made too.

The adaptability of TMap® is not focused on a specific aspect of the method, but is

embedded throughout the method. Adaptability is more than just being able to

respond to the changing environment. It is also being able to leverage the change to

the benefit of testing. This means that TMap® can be used in every situation and that

TMap® can be used in a changing situation. During the execution of projects, changes

occur that have an impact on earlier agreements. TMap® offers the elements to deal
with such changes.

TMap’s adaptability can be summarised in four adaptability properties:

• Respond to changes.

• Reuse products and processes.

• Learn from experiences.

• Try before use.

6.4.2 TMap NEXT’s approach towards techniques and tools

TMap NEXT® supports effective and efficient testing and test automation, with a

complete toolbox. With this tool box, the tester possesses a great number of options

to meet the test challenges in an ASDE successfully.

Many techniques can be used in an ASDE. Some techniques may have to be adjusted

slightly to the ASDE. Useful techniques are: test estimation, defect management,

product risk analysis, test design and product evaluation.

To execute tests efficiently, test tools are necessary (see also section 6.2.4).

In TMap NEXT® the test tools are classified in four groups:

• Tools for planning and managing tests.

• Tools for designing tests.

• Tools for executing tests.

• Tools for debugging and analyzing code.

Testing in Agile Software Development Environments with TMap NEXT®

How to put the test vision into practice

© Sogeti Netherlands B.V. Page 18

Using tools can have the following advantages:

• Increased productivity.

• Higher testing quality.

• Increased work enjoyment.

• Extension of test options.

6.4.3 TMap NEXT’s business driven testing

Agile development is about doing the right things for the right reasons, all aimed at

delivering value to the end-user with the right quality for the right price. The TMap

NEXT® business driven test management approach also aims to do this.

In general, it can be said that the business driven test management approach (BDTM)

aims to achieve a balance between the investment in money and time on the one

hand, and the result to be achieved and the risks covered on the other.

It is important to give serious thought to the test strategy, also in agile environments.

Choices must be made on what to test and how intensively to test it. Such choices

depend on the risks that the team (including the client!) believes it will incur, how

much time and money is available, and the result the organization wishes to achieve.

The fact that these choices are based on risk, result, time and cost is called ‘business

driven’.

Thanks to the BDTM approach, TMap® pays explicit attention to communication by

speaking the ‘language’ of the client. BDTM aims to set up and manage a test process

in close collaboration with the client, seeking a balance between the aspects of result,

risk, time and cost.

Result

Where in more traditional environments usually the scope of the project is fixed and

time and quality may vary, in the agile approach time and quality are fixed and scope

can vary. During the project, the client is frequently involved in making choices

relating to the required result. The advantage is that the test process continues to

match the wishes and requirements (= test goals), and therefore the expectations, of

the organization as closely as possible.

Risk

The test effort is related to the risks for the client of the system to be tested. As a

result, the deployment of manpower, resources and budget focuses on those parts of

the system that are most important to the client. TMap NEXT® uses the test strategy

to distribute the test effort over the system parts, thus allowing the client to gain

insight into the extent to which risks are covered or not. In agile projects, the team

will be leading in deciding on risks and priorities, since the team has the best insight in

the risks and priorities and how they change during the development process (see also

section 6.3.2).

Time

The schedule of the test process is related to the possible requirements relating to the

end date of the test project and the formulated test goals. In agile, iterations are time

boxed, so time is fixed within iterations. However, the number of iterations in a

project is not always set on beforehand. The test goals to be achieved can change

during the project (flexible scope). In the mean time, the client has an adequate

picture of the lead time and the relationship with the test goals.

Testing in Agile Software Development Environments with TMap NEXT®

How to put the test vision into practice

© Sogeti Netherlands B.V. Page 19

Cost

The budget for the test process is related to an imposed budget, if any, and the

formulated test goals. If changes are made that have an impact on the required

testing intensity of the user stories, this is translated immediately to new or adjusted

test goals and an amended budget. As a result, the client has at all times an adequate

picture of the required budget and the relationship with the test goals.

6.4.4 TMap NEXT’s life cycle model

To have controlled, repeatable testing, a process has to be in place to facilitate this.

The TMap NEXT® life cycle model offers this and can be adapted to fit agile software

development.

Agile test processes are much more diffuse and test activities are performed in parallel
rather than sequential. The activities from the TMap NEXT® test lifecycle can be found

in agile too. A clear picture of the TMap NEXT® agile test lifecycle is depicted below.

Figure 1: TMap NEXT® agile test lifecycle.

Explanation to figure 1:

A project contains one or more iterations. Per project a compact project test plan is made. An iteration

contains one or more user stories. Per iteration a compact iteration test plan is made. The preparation (P),

specification (S), execution (E) and completion (C) phases apply to each individual user story. The control

and infrastructure phases are continuous phases covering the whole project.

When using TMap NEXT® in an ASDE, keep the following in mind: be adaptive, use

TMap NEXT® in an agile way.

Per TMap NEXT® phase some tips and hints are given:

Planning
• A compact high level long term plan (project test plan) covering a number of

iterations is typically produced to ensure the test strategy, plan and organisation

spanning multiple iterations is defined and agreed upon. This may be produced in

‘iteration 0’. The use of a project plan can help teams that are used to a more

sequential form of development methodology move to an agile methodology.

The expectation should be that this plan will change through the project.

Testing in Agile Software Development Environments with TMap NEXT®

How to put the test vision into practice

© Sogeti Netherlands B.V. Page 20

• At the start of each iteration a compact plan is also produced to detail the test

approach for the iteration in question (iteration test plan). This plan may also

need to change based on new information coming to light during the iteration.

In principle, however, these iteration test plans are more or less fixed, in order to

protect the team from too many disturbances.

• All the above plans are ‘lighter’ than those used with sequential development.

Documentation does not necessarily mean a pile of paper. Agile practices strive

for efficient and effective documentation. If that means test plans can be found in

pictures of a whiteboard, that is fine.

• The project test plans are continuously adapted as appropriate during iterations
reflecting the iterative nature of agile software development.

• The iterations are typically fixed in duration (time boxed) so that the iteration plan

reflects the testing of the highest priority scope (in terms of ‘user stories’) (See

also section 6.3.2).

Control

• Agile culture involves team empowerment, hence the ‘manage’ element of control

is typically more a facilitation activity. In agile environments the team is

responsible for the work that has to be done and for solving the problems that

arise. The members of this team have to trust each other and in turn they have to

be trusted by their management.

• Daily stand-ups are a typical mechanism for agile ‘control’ which also provide

visibility and supports reporting on the testing activities. At the daily meetings the

team will discuss the schedule, blocking issues and corrective actions. The testers

will also ask if other team members need anything from them.

• Overall control is present through the BDTM aspects and could be made visible by

showing the status per BDTM aspect, result, risk, time and cost.

Preparation, Specification and Execution

These activities are performed, normally in parallel to each other and per user story

within each iteration.

Preparation

• Evaluation of requirements and user stories (the assessment of the test basis), is

normally an informal, ongoing interaction with the product owner, customer (for

business insight) and developer (for technical insight). This means that if the

tester gets sufficient answers to questions, the assessment of the test basis is

done and no testability review report is needed.

• Assignment of techniques will usually include experience based techniques such as

for instance, exploratory testing.

• (Re-)evaluation of product risks.

Specification

• Automated test scripts are typically produced within agile teams (preferably at the

unit test level, but also at other levels as part of a test driven development

approach).
• The level of documentation of manual test specification is typically light

(procedural information would not be documented unless absolutely necessary).

Testing in Agile Software Development Environments with TMap NEXT®

How to put the test vision into practice

© Sogeti Netherlands B.V. Page 21

A decision needs to be made at the organisation level with respect to what level of

documentation is required. For example, having well documented test cases

means that more junior testers can execute the test cases, however this takes

more time during the initial documentation of the test cases and later at the

maintenance stages. Also, important information that is not documented still has

to be communicated somehow.

• In parallel to the evaluation of requirements and user stories the tester will create

the test specifications. In addition, the answers given during the evaluation by the

product owner, customer and developer could become a part of the test

specifications. This could very well mean that in the end test specifications contain

more (functional, technical, etc.) information of the product then written down in

requirements and user stories.

Execution

• Typically with the high level of automation, there is constant regression testing

performed at the unit level and at the higher levels as part of a continuous build

and integration strategy.

• Pre or smoke tests are normally not required as there is continuous automated

regression testing and there are no handovers to independent test teams.

However, pre or smoke tests can be used to check if a test is ready to run in a

regression test.

• ‘Check and assess’ is typically relative to the teams definition of working software

being ‘done’ and potentially shippable.

• As the focus is on working software, defects are often repaired almost as soon as

they are found. However, not all found defects are fixed immediately. In addition
to this, in agile software development projects sometimes already solved defects

seem to re-appear in a following iteration. Therefore registration (tracing and

tracking) of defects is important. Also, a possible need for reliable metrics must be

considered here too.

Completion

• At the end of each iteration the process is evaluated as part of a ‘retrospective’.

The lessons learned should be incorporated as much as possible in the next

iteration test plan.

• Testware preservation is decided upon at the end of each iteration. However, it

sometimes can be mainly performed as part of the final iteration, but

dependencies between iterations must be taken into account here.

• Testers as well as developers should be using the configuration management

process to manage and control test ware.

• In agile environments, responding to change is considered to be more valuable than

following a plan. However, responding to change means more than responding to

changing requirements. What if team members or roles change? In such situations,

transferability of, for instance, test scripts become an issue. Responding to changes

can be quite hard if little or no attention has been given to maintainability,

transferability and reusability. This is where testware management comes in.

Testware management improves maintainability, transferability and reusability and

therefore it is an important facilitating area for an agile team.

Testing in Agile Software Development Environments with TMap NEXT®

How to put the test vision into practice

© Sogeti Netherlands B.V. Page 22

Infrastructure

• The infrastructure is typically set up and maintained by the team members

themselves. So the team must have members with sufficient technical knowledge.

• The tester will also set up or arrange to have the test environment and data to be set

up. Ideally this should be something testers can do themselves in an early stage.

• In order to deliver working software, a robust and reliable test environment is

essential. For agile environments a stable test environment is crucial because

iterations or increments must prove their value in a short period of time. Problems

that arise in the environment may block the progress of all other activities and the

impact on the iteration can be huge. The test environment also plays a major role
in integration tests. The greatest part of integration testing can be part of an

iteration deliverable. It can be incorporated into the delivery of a “potentially

shippable product”, e.g. in a simulated production environment. A stable test

environment is a very important facilitating area for an agile team, enabling it to

deliver reliable working software at the end of each iteration.

Which tips and hints apply to your situation can and will differ from situation to situation.

So this means that the given hints and tips have to be adjusted to your own situation.

6.5 Concluding

Testing in agile software development environments ensues a different way of

working. Moreover, a different mind-set is necessary. It will not be sufficient to follow

a list of rules, applicable in ASDEs. A professional agile tester will need a thorough

understanding of the agile approach along with a readiness to step out of the test
compartment. Doing whatever is necessary in an effective and efficient way, in order

to be a valuable agile team member, must be the goal of an agile tester. TMap NEXT®

can support the agile tester to achieve this.

Testing in Agile Software Development Environments with TMap NEXT®

glossary

© Sogeti Netherlands B.V. Page 23

7 GLOSSARY

BDTM Business driven test management is aimed at enabling the client to manage

the test process on rational and economic grounds. Important BDTM aspects

are: result, risk, time and cost.

Chance of failure The chance of failure is the chance that a product (component) will fail

during operational use because it contains a fault. The chance that the product

will fail increases with the frequency of its use.

Damage Damage relates to the negative impact resulting from the failure of the

product. Product failure may result in damage for multiple stakeholders.

Definition of Done (DoD) The definition of done is a checklist of valuable activities required to produce

software. The DoD is a simple list of activities (writing code, coding comments,

unit testing, system testing, acceptance testing, release notes, design

documents, etc.) that add verifiable/demonstrable value to that product. The

Definition of done not only describes activities but also the criteria that must be

met before a task is completed (“done”). Focusing on value-added steps allows

the team to focus on what must be completed in order to build software while

eliminating wasteful activities that only complicate software development

efforts. Definition of done not only describes activities or tasks but also the

requirements that must be met before a task is completed (“done”).

Exploratory testing Is the simultaneous learning, designing and executing of tests, in other words

every form of testing in which the tester designs his tests during test execution

and the information obtained is reused to design new and improved test cases.

Extreme programming (XP) Extreme programming is a software development methodology which is

intended to improve software quality and responsiveness to changing customer

requirements.

Iteration An iteration is a time boxed section of a project designed to deliver a subset of

working user stories.

Product risk The chance that the product fails in relation to the expected damage if this

occurs: Product risk = Chance of failure * Damage

where Chance of failure = Chance of defects * Frequency of use.

Product risk analysis Analysing the product to be tested with the aim of achieving a joint view, of the

more or less risky characteristics and parts of the product to be tested so that

the thoroughness of testing can be related to this view.

Project A project contains 1 or more iterations and a list of user stories. At project

level a set of user stories (requirements) is delivered.

Rapid application

development (RAD)

Rapid application development refers to a type of software development

methodology that uses minimal planning in favour of rapid prototyping. The

‘planning’ of software developed using RAD is interleaved with writing the

software itself.

Release A release is a point in the project where working software is delivered to a

team. During an iteration testers can expect multiple releases from

development.

Requirement A requirement is a singular documented need of what a particular product or

service should be or perform. It is most commonly used in a formal sense in

systems engineering or software engineering.

Retrospection The evaluation of the process at the end of an iteration.

Rational unified process

(RUP)

The rational unified process is an iterative software development process

framework created by the rational software corporation, a division of IBM.

Scrum Scrum is an iterative, incremental framework for project management and
agile software development based on lean.

Stand-up meeting A stand-up meeting (or simply stand-up) is a daily team meeting held to

provide a status update to the team members. The 'semi-real-time' status

allows participants to know about potential challenges as well as coordinate

efforts to resolve difficult and/or time-consuming issues.

Testing in Agile Software Development Environments with TMap NEXT®

glossary

© Sogeti Netherlands B.V. Page 24

Test driven development

(TDD)

Test-driven development is a software development technique that relies on

the repetition of a very short development cycle: first a failing automated test

case that defines a desired improvement or new function is written, then code

to pass that test is written.

Test level A test level is a group of test activities that are managed and executed

collectively.

Test strategy The distribution of the test effort and coverage over the parts to be tested or

aspects of the test object aimed at finding the most important defects as early

and cheaply as possible.

Testing A process that provides insight into, and advice on, quality and the related

risks.

User story A user story describes desired functionality from the customer (user)

perspective and is not technical. A good user story describes the desired

functionality, who wants it, and how and why the functionality will be used.

The basic components of a user story are sometimes dubbed as the three C's:

Card - the written description of the story, serves as an identification,

reminder, and also helps in planning.

Conversation - this is the meat of the story; the dialogue that is carried out

with the users; recorded notes; mock-ups; documents exchanged.

Confirmation - the acceptance test criteria that the user will utilize to confirm

that the story is completed.

A well-written user story follows the INVEST model: Independent, Negotiable,

Valuable, Estimable, Small, and Testable.

Though this definition of a user story can be preferred in order for the team to

get a good idea of what a customer needs, basic user stories usually comply to

the following line: As a <Role> I want to <Functionality> so I can <Goal>.

Testing in Agile Software Development Environments with TMap NEXT®

About the authors

© Sogeti Netherlands B.V. Page 25

8 ABOUT THE AUTHORS

Cecile Davis

Cecile Davis is a test consultant, focussing on improvement models like TPI NEXT® and

People CMM®. Her specialism lies in the subject of agile testing.

She started her IT career in 1998, programming C at a software company and

progressing into test engineering soon afterwards. She has been involved in several

agile test projects. She is RUP-certified, co-writer of TPI NEXT® and founder of the SIG

on agile testing within Sogeti. She is involved in several (national) SIG’s related to this

subject.

Besides this, Cecile likes to develop training material and teach. She is becoming a

regular speaker at national and international conferences.

Leo van der Aalst

Leo van der Aalst has almost 25 years of testing experience and developed amongst

others services for the implementation of test organisations, test outsourcing, test-

governance and software testing as a service (STaaS).

He is co-author of the TMap NEXT® and TMap NEXT® BDTM books. Leo designed the

EXIN tasks for TMap NEXT® certification, is lector Software Quality & Testing at Fontys

University of Applied Sciences, member of the standardization committee 381007

"Software and Systems Engineering” and member of the Innovation Board Testing.

Besides all this, Leo is a much sought-after teacher of test training, a regular speaker

at national and international conferences, and he is the author of several articles.

Want to know more?

For more information about how Sogeti’s Testing Solutions can help organizations

achieve their testing and QA goals, please contact Sogeti at tmap@sogeti.nl

or visit: www.sogeti.nl or www.tmap.net

	Voorblad.pdf
	Testing_in_Agile_Software_Development_Environments_with_TMap_NEXT_sept 2010

